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ABSTRACT

The Solar system beyond Neptune is believed to house a population of small primordial bodies left over
from the planet formation process. The region up to heliocentric distance -50 AU (a.k.a. the Kuiper Belt)

may be the source of the observed short-period comets. In this region, the phase space structure near orbital
resonances with Neptune is of special interest for the long-term stability of orbits. There is reason to believe

that a significant fraction (perhaps most) of the Kuiper Belt objects reside preferentially in these resonance
locations. This paper describes the dynamics of small objects near the major orbital resonances with

Neptune. Estimates of the widths of stable resonance zones as well as the properties of resonant orbits are
obtained from the circular, planar restricted three-body model. Although this model does not contain the full

complexity of the long-term orbital dynamics of Kuiper Belt objects subject to the full N-body perturbations

of all the planets, it does provide a baseline for the phase space structure and properties of resonant orbits

in the trans-Neptunian Solar system. © 1996 American Astronomical Society.

1. INTRODUCTION

It has long been conjectured, on both theoretical and ob-

servational grounds, that the outermost regions of the Solar

system may contain a large population of small icy bodies.

For example, on the basis of theoretical considerations of the

genesis of the planetary system from the primordial Solar

Nebula, Kuiper (1951) suggested that a remnant population

of icy planetesimals left over from the planet-building pro-

cess may exist at the current epoch beyond the orbit of Nep-

tune. Whipple (1964) and Bailey (1983) speculated on a
massive comet belt as the source of unexplained perturba-

tions of Neptune's orbit [although this argument must now
be discarded as the post-Voyager revisions in the planetary

ephemeris no longer show any unexplained residuals in Nep-
tune's motion (Standish 1993)]. Hamid et al. (1968) ana-

lyzed the orbital plane perturbations of comet P/Halley and
concluded that any comet belt between 40 and 50 AU has a

total mass less than 1 .,lg e . This limit still allows for very

large numbers, perhaps #.(109), of cometary bodies.
More recently, it has been suggested that the observed

short-period comets with orbital periods <_20 yr, the "Jupiter
family" comets, originate in a belt of low-inclination bodies

just beyond the orbit of Neptune, between 35 and 50 AU

(Fernandez 1980; Fernandez & Ip 1983). The older hypoth-

esis that short-period comets originate in a population of

near-parabolic Oort Cloud comets which are perturbed into

shorter orbits by the giant planets appears unlikely: Duncan

et al. (1988), Quinn et al. (1990) have shown that the orbital
element distribution of the observed short-period comets is

inconsistent with a source in the nearly isotropic Oort Cloud

but is compatible with a disk-like source in a trans-Neptune
comet belt, which they call the "Kuiper Belt." A possible

member of the Kuiper Belt was first discovered in 1992 at a
distance of 41 AU from the Sun [1992 QB l, reported in

Jewitt & Luu (1993)], and several additional discoveries

have been reported since suggesting a potential population of

-35 000 bodies larger than -100 km (Jewitt & Luu 1995).

The dynamical structure of this population has been the

subject of several recent theoretical studies (Levison & Dun-
can 1993; Holman & Wisdom 1993; Malhotra 1995). The

first two of these (Levison & Duncan 1993 and Holman &

Wisdom (1993)), studied the long-term stability of test par-

ticles in low-eccentricity and low-inclination orbits beyond

Neptune, subject only to the gravitational perturbations of

the giant planets in their present orbital configuration. They
found orbital instability on short time scales (< 107 yr) inte-

rior to 33-34 AU, an intricate structure of interspersed re-

gions of stability and instability in the semimajor-axis range
of 34-43 AU, and substantially stable orbits beyond 43 AU.

The intricacy of the dynamical structure appears to be par-

ticularly acute near the locations of orbital resonances with

Neptune.
Any primordial trans-Neptune population of planetesi-

mals was undoubtedly subject to dynamical evolution during

the planet formation process, and the initial conditions as-
sumed in the above studies are not necessarily representative

of the state of the Kuiper Belt at the end of planet formation,

as acknowledged in Holman & Wisdom (1993). The nature

of the "dynamical sculpting" of the Kuiper Belt that would

have occurred during the late stages of planet formation was

the subject of a study by Malhotra (1995). This study con-

cludes that the giant planets' orbits would have evolved sig-

nificantly and the Kuiper Belt would have been sculpted into

a highly nonuniform distribution early in Solar system his-

tory: most of the primordial small bodies in the region be-

yond Neptune's orbit and up to approximately 50 AU helio-
centric distance would have been swept into narrow regions

of orbital resonances with Neptune, particularly the 3:2 and

the 2:1 orbital resonances which are located at semimajor

axes of approximately 39.4 and 47.8 AU, respectively. The
orbital inclinations of most of these objects would remain
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low (typically < 10°), but the eccentricities would be excited

to significant values, typically 0.1-0.3. This structure would

be largely preserved to the present epoch.

Pluto (and its satellite Charon) have long been known to

reside in the 3:2 Neptune resonance; the resonance libration

protects this pair from close encounters with Neptune, de-

spite their Neptune-crossing orbit (with eccentricity --0.25).

Several of the newly discovered Kuiper Belt objects are also

likely residents of this resonance (Marsden (1995). (How-

ever, note that the orbital parameters of most of these objects

remain rather poorly constrained pending future follow-up
observations.)

In any case, it is clear that the locations of Neptune's

orbital resonances are particularly interesting with regard to

the long term dynamics of the Kuiper Belt.

In the region between Neptune's orbit and approximately

50 AU heliocentric distance, by far the most important or-

bital perturbations are due to Neptune alone, although the

N-body effects of all the planets, particularly secular reso-
nance effects, also surely play a significant role over the age

of the Solar system. In this paper, 1 use the simplest possible

dynamical model, namely, the circular, planar restricted

three-body model, to determine the basic phase space struc-

ture near the locations of Neptune's orbital resonances exte-

rior to Neptune's orbit. This model does not reflect the com-

plexities that arise with (i) nonzero orbital inclination of the

test particle, (ii) a realistic representation of Neptune's mo-

tion (its time-varying orbit), and (iii) the perturbations of the

other planets. Some of these unmodeled effects can lead to

important variations in the dynamics. In particular, as men-
tioned above, secular resonances in certain regions of phase

space can drive the inclinations and eccentricities to large

amplitudes and further complicate the dynamics near mean
motion resonances. Nevertheless, this model is a reasonable

first approximation because (a) the evidence from short-

period comets suggests a low-inclination source population,

(b) in the trans-Neptunian space, there are no first-order or-

bital resonances with any other giant planets, and (c) Nep-

tune's eccentricity and inclination do not exceed -0.025 and

--2.5 °, respectively, over billion year time scales under the

effects of the mutual gravitational perturbations of the plan-

ets. The advantage of this simple model is that it is tractable:
it allows for the calculation of two-dimensional surfaces-of-

section in which the phase space structure, in particular, the

properties of resonance regions, can be easily visualized.

This provides for relatively straightforward estimation of the
widths of resonances and the determination of several inter-

esting dynamical properties of resonant orbits, such as the

libration periods and their dependence on orbital eccentricity

and libration amplitude. To a considerable degree, most of

these properties are preserved in the more realistic situation.

In short, this model provides a reasonable "'baseline" for the

phase space structure in the trans-Neptune region.

The rest of this paper is organized as follows. Section 2

describes the technical details of the planar, circular re-

stricted three-body model for the Sun, Neptune, and a Kuiper

Belt object, including a description of the information that

may be gleaned from surfaces-of-section. Section 3 provides
a detailed look at the phase space structure near the major

Neptune resonances of interest for the Kuiper Belt. Section 4
summarizes and discusses the results.

2. THE PLANAR CIRCULAR RESTRICTED THREE-BODY MODEL

The classical planar circular restricted three-body problem

is a particular case of the general gravitational three-body

problem of masses m I ,m2,m 3 defined by the tbllowing re-
strictions:

(1) the motion of all three bodies takes place in a common

plane;
(2) the third body, m3, has zero mass; therefore it does not

influence the motion of m I and m2; and

(3) the masses m I and m 2 describe circular orbits about
their common center of mass.

In the context of this paper, m I represents the Sun and m 2

represents Neptune. The system is made nondimensional by

the lollowing choice of units: the unit of mass is taken to be

m_+m2; the unit of length is chosen to be a N the constant
separation between m I and m 2 (i.e., the mean heliocentric

distance of Neptune); the unit of time is chosen such that the

orbital period of m i and m 2 about their center of mass is 27r.
Then the universal constant of gravitation, G=I, and the

masses of the Sun and Neptune are 1 -/z and/x, respectively,

where tz=rn2/(ml+m2). For the Sun-Neptune system, we

have #=5.146× 10 -5, and this value is used throughout this

paper.
In a reference frame with axes (X, Y) rotating with m t and

m 2 and with origin at their center-of-mass, the Sun and Nep-
tune have fixed coordinates, (-#,0) and (l-/z,0), respec-

tively, and the third (massless) body has the following equa-
tions of motion:

X+/z X- I +#

u---Tr----,

y y (l)

f=-2,¢+ v-/I-u)

where r I and r z are the test particle's distance to the Sun and

to Neptune, respectively,

r_ = [(X + p.)2 + y2] 1/2,

r 2= [(X- 1+ bt) 2+ y2] 1/2. (2)

These equations of motion admit a constant of the motion,
the Jacobi integral, given by

C=X2+y2-X2-_'2+2 +-_2. " (3)

NO other constant of the motion is known. For future refer-

ence, we note that the Jacobi integral can be expressed in

terms of the test particle's semimajor axis, a, and eccentricity
e:

1
C = - + 2 x,_+ C(#). (4)

a

The motion of the test particle takes place on a three-

dimensional subspace (defined by a particular value of C)
embedded in the lbur-dimensional phase space, (X,A', Y, Y).
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FIG. 1. The phase space structure in the neighborhood of the Neptune-Pluto 3:2 orbital resonance determined from the circular planar restricted three-body
model. The same surface-of-section is shown in different variables: (a) cartesian variables, (X,_'); (b) plane polar variables. (r,/'); (c) Delaunay variables

[mean anomaly M, canonical momentum J = _a( 1 - _S'_)]. (d) is a pseudo-surface-of-section since the semimajor axis a is not a canonical variable.
However, qualitatively it is very similar to the surface-of-section (c), and it provides a visualization of the resonance width in terms of the semimajor axis and

the amplitude of the perihelion libration.

The usual two-dimensional surface-of-section (s-o-s) is de-

fined by

r=0, _'>0, (5)

and the coordinates on the section are (X,,_). The geometri-

cal interpretation is straightforward: we plot the X coordinate

and velocity of the test particle at every conjunction with
Neptune. For orbits exterior to Neptune (strictly speaking,
with mean motion smaller than Neptune's), this occurs every
time the test panicle is aligned with the Sun and Neptune and

is on the opposite side of the Sun from Neptune; for orbits

interior to Neptune (i.e., with mean motion larger than Nep-
tune's), this occurs every time the test panicle is aligned with

the Sun and Neptune and is on the same side of the Sun as

Neptune. For the Solar system beyond Neptune, only the

exterior orbits are of interest.
In the s-o-s so defined, periodic orbits of the test panicle

appear as discrete points. The successive crossings of this

surface by a quasiperiodic orbit lie on a closed smooth

curve, while a chaotic orbit fills a two-dimensional area.

As the regions in the neighborhood of orbital resonances

are of particular interest here, the following remarks are in
order.

The location of a (j + k):j orbital period resonance is de-

fined by Kepler's relation between the orbital period and the
semimajor axis:
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j + k) 213a = ares= \ ---_ , (6)

where j and k are integers.

In general, at any resonance, one finds a family of stable

periodic orbits that can be parametrized by the orbital eccen-

tricity [or, equivalently, the Jacobi integral, if we use Eq. (6)

in Eq. (4)] such that the semimajor axis equals are s for all

orbits in this family, and the eccentricity ranges from zero to

some maximum value, emax; for e>ema x the periodic orbit

becomes unstable.

In some neighborhood, +Aa of are s , near each resonance,

there exist stable quasiperiodic orbits that librate with finite

amplitude about the exact resonant orbit; the half width Aa

depends upon the mass parameter #, the resonance itself

(i.e., ares) and the Jacobi integral C.

Let us consider the Neptune-Pluto 3:2 resonance as an

illustrative example. If Pluto's inclination is neglected, and if

one assumes a fixed circular orbit for Neptune, then the Ja-

cobi integral C=2.9798 for the Sun+Neptune+Pluto re-

stricted three-body problem. Figure l(a) is a s-o-s in the

neighborhood of the 3:2 Neptune resonance for this value of

C. This section shows examples of all three types of orbits.

The center of the smooth curves lying near (X,X)=(

-1.65,0) corresponds to the periodic orbit whose period is

exactly 3/2 that of Neptune. The smooth curves are quasip-

eriodic orbits surrounding this exact periodic orbit and rep-

resent test particle orbits that librate about the exact reso-

nance; the size of a smooth curve bears a direct relationship

to the amplitude of libration. Such librating orbits are phase

protected from having close encounters with Neptune even if

the orbit is Neptune crossing. It can be seen that, in general,

the regions of quasiperiodic orbits are surrounded by chaotic

orbits, i.e., beyond a certain libration amplitude, the smooth

curves dissolve into a chaotic zone. Embedded within the

"chaotic sea" are other stable zones or chains-of-islands that

represent other nearby higher order and secondary reso-

nances. The origin of the chaos is due to the overlap of the

higher-order and secondary resonances.

It is perhaps more meaningful to visualize the resonance

zone in variables that can be more directly translated into

"resonance width." The latter is traditionally (and somewhat

loosely) defined as the range in semimajor axis where the

orbital perturbations are large. In the restricted three-body

problem with/z,_ 1, this is the range in which the amplitude

of the orbital parameter variations of the test particle is not

simply linearly proportional to/z, but is ¢ (/z") with v--0.5.

In general, in the neighborhood of any resonance, we find

regions of stable, librating orbits surrounded by a substantial

chaotic zone where test particles may suffer close encounters

with Neptune. In this paper, I will define the resonance half

width Aa as the maximum amplitude of the semimajor-axis

variations of stably librating resonant orbits. The value of

Aa will be estimated from the s-o-s as described below.

The phase space structure seen in the (X,._') plane can

also be seen in other (generalized) canonical coordinates. For

example, in plane polar coordinates the equivalent s-o-s

(r,?,O,O) in the inertial reference frame is (r,_) with the

same section condition as in Eq. (5). The s-o-s condition can
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FIG. 2. The time variation of the semimajor axis for orbits with e_0.25 near

the boundary between the stable libration zone and the chaotic zone at the
3:2 Neptune resonance (cf. Fig. 1). (The unit of length is Neptune's semi-
major axis, and the unit of time is Neptune's orbital period, approximately
165 yr.) The Jacobi integral for all four orbits is C=2.9798; the initial
conditions (x,x,Y,Y) for the four orbits are (a)--(-l.6100,0.0,

0.0,0.92442), (b)--(- 1.6105,0.0,0.0,0.92508), (c)--(- 1.6106,0.0,0.0,
0.92521). (d)--(-1.6110,0.0,0.0,0.92574). These orbits are all chaotic and

are shown in order of decreasing distance to the stability boundary. The

orbits in (a), (b), and (c) become unstable after 7, 31, and -200 librations
(i.e,,-8× 10 4, --3× l0 s, and -2× 106 yr), respectively.

be rewritten in terms of polar coordinates as follows:

{ 0° ifn>l }0-0'= 0<1,
180 ° if n< 1 '

where 0' is the longitude of Neptune, and n is the mean

motion of the test particle. In other words, the (r,k) plane is

equivalent to the (X,,_') plane with points plotted at every

conjunction of the test particle with Neptune. The (r,_:) s-o-s

is shown in Fig. l(b).

Carrying this one step further by means of a canonical

transformation to Delaunay variables (M,J,h,L), where

M,h are the mean anomaly and mean longitude and J

= ,,a( I - ,/I-_Z_e ), L = _[cf. Chap. XVII in Brou-

wer & Clemence (1961) and Chap. 10 in Goldstein (1980)],

this same section can also be seen in the (M,J) plane. The

(M,J) s-o-s is shown in Fig.l(c). It is evident from the latter

figure that for Pluto-like resonance-locked orbits (i.e., for the

particular value of C chosen in this s-o-s) the mean anomaly

at conjunctions with Neptune librates about 180 ° and its

maximum libration amplitude is --100 °. Orbits with larger

amplitudes are chaotic.

In addition to the maximum amplitude of M, the reso-

nance libration region is bounded in J as well. Now, if we

note that (i) the Jacobi integral provides a relationship be-
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FIG. 3. The 3:1 Neptune resonance located at am=2.08008 (i.e., 62.6 AU). The phase space for orbits with (a) C=3.3508, (e) =0.1; (b) C=3.3070, (e) =0.2;

(c) C=3.2324, (e) =0.3; (d) C=3.1244, (e) =0.4. The phase space is largely regular at this resonance. The width of the libration zone increases with (e). For
<e) _0.13, the libration zone splits into two zones of asymmetric librations surrounded by a narrow zone of large-amplitude symmetric librations. Panel (e)
shows a symmetrically librating orbit (with e--0.1) in the rotating frame; panel (0 shows an asymmetrically librating orbit (with e,-0.2). The symbols O and
+ indicate the fixed locations of the Sun and Neptune in the rotating frame. Panel (g) shows the libration period (in units of Neptune's orbital period) as a
function of the maximum excursion of the resonance angle _bfrom 180°. Note that the center of the asymmetric librators moves away from "4_= 180°'' with

increasing (e), as indicated by the beginning of the curves labeled by the different values of (e). The libration period increases with libration amplitude for
the asymmetric librators, but decreases with amplitude for the symmetric (large-amplitude) librators; at the separalrix on the boundary between the symmetric

and asymmetric librations, the libration period becomes indefinitely large (although this is not quite obvious due to the finite resolution in this figure).

tween a and e [see Eq. (4)], and (ii) for a particular orbital

resonance defined by the ratio (j + k) :j of the orbital periods

of the test particle and Neptune, the librating orbits all have

a phase-averaged semimajor axis (a)=a_s, then any s-o-s

can be labeled uniquely either by the value of C or, in the

neighborhood of a particular orbital resonance, by the value

of (e) (with the understanding that (a)= ares). For example,

for the s-o-s in Fig. 1, we have C=2.9798; near the 3:2

resonance, (a)= 1.3104; therefore, from Eq. (4) we have (e)

=0.250. Thus, the phase space structure in the neighborhood

of a particular orbital resonance can be systematically stud-

ied in a set of surfaces-of-section where all of them have a

common value of (a) but various values of (e) (hence dif-

ferent values of C). This allows a visualization of the phase

space near an orbital resonance as a function of the mean

orbital eccentricity.

Finally, in Fig. 1 (d) I have plotted the values of a against

M for the same points represented in Figs. l(a)-l(c). Note

that this is not a surface-of-section. One might call it a

"pseudo-surface-of-section," for a is not a canonical vari-

able. However, the constancy of C imposes a relationship

between a and e [cf. Eq. (4)] which ensures that this plot

looks very similar to the (M,J) s-o-s in Fig. l(b) and the

stable libration regions and the chaotic regions are easily

distinguished. The reason for choosing this noncanonical

variable is that the resonance width Aa of the stable libration

zone can be readily determined from this figure. Therefore,

the (a,M) plane, the pseudo-surface-of-section, will be used

in the next section for a systematic look at the properties of

the phase space in the neighborhood of several Neptune reso-

nances.

The libration time scale in the libration zone and the time

scale for orbital instability in the chaotic zone are of particu-

lar interest for the dynamics of Kuiper Belt objects. These

libration time scales have been determined for individual

resonances and are also given in the next section. Typically,

the timescale for orbital instability inside the chaotic zone

surrounding a resonance is only a few times the libration

period. However, close to the boundary between the iibration

zone and the chaotic zone, this time scale can become ex-

ceedingly large. In particular, for Pluto-like orbits with ec-

centricity _0.25 in the 3:2 Neptune resonance, the timescale

for instability in the chaotic zone (i.e., for amplitude of the

resonance angle greater than _140 °) is 5'(105) yr, but close

to the edge of the libration zone this time scale increases by

an order of magnitude or more. This is illustrated in Fig. 2.

3. NEPTUNE RESONANCE ZONES

In principle, there is an infinite number of orbital reso-

nances in the three-body problem. However, we will see that

only a handful warrant any detailed investigation.

Low-eccentricity orbits in the immediate neighborhood of

a planet are unstable. There is a simple explanation for this
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a large-amplitude symmetrically librating orbit (both with e_0.3) in the rotating frame. (The motion of the test particle over a complete libration period is
traced in these figures.) Note that in both types of orbits the perihelion occurs away from Neptune's longitude. Panel (g) shows the libration period (in units

of Neptune's orbital period) as a function of the maximum excursion of the resonance angle _ from 180°. The center of the asymmetric librators is indicated
by the beginning of the curves labeled by the different values of {e). The libration period increases with libration amplitude for the asymmetric librators, but
decreases with amplitude for the symmetric {large-amplitude) librators; at the separatrix on the boundary between the symmetric and asymmetric librations,

the libration period becomes indefinitely large.

orbital instability that follows from Chirikov's (1979) "reso-

nance overlap criterion": first-order (j+ I):j resonances

with (j + 1 ) _>0.51 tz -2n overlap completely (Wisdom 1980).

[Numerical experiments by Duncan et al. (1989) show that

the numerical coefficient on the right-hand side in this rela-

tion must be revised to 0.44]. Complete overlap of neighbor-

ing resonances results in the destabilization of all periodic

and quasiperiodic orbits in the neighborhood of those reso-

nances. In other words, circular test particle orbits are un-

stable in the immediate neighborhood la-11_<1.5/* 2t7 of a

planet's orbit. For Neptune (/*=5.146× 10-5), this criterion

shows that all first-order resonances with (j + 1 )>/8 are com-

pletely overlapping, so that circular orbits beyond Neptune

with orbital radii less than about 33 AU are unstable.

Therefore, beyond the semimajor-axis range of about 33

AU, at most only seven first order (j + 1 ):j resonances with

j= 1,2,...7 are isolated from each other (at least for low ec-

centricities). However, I have found numerically that low-

eccentricity orbits at the 8:7 and 7:6 Neptune resonances are

also chaotic. This is not entirely surprising, lor the resonance

overlap criterion is quite approximate, and Wisdom's scaling

law is strictly valid only in the asymptotic limit j-> 1. There-

fore, only five first-order (j + 1 ) :j resonances with j = 1,2,...5

are of potential significance for the long-term storage of

Kuiper Belt objects.

Furthermore, since all second- and higher-order reso-

nances in the first-order resonance overlap region are also

destroyed, it follows that there are only seven second-order

Neptune resonances of potential interest: (j+2):j with

j = 1,3,5 ..... 13. Of these, 1 have found numerically that only

three (3:1, 5:3, and 7:5) have resonance widths Aa_0.005.

Therefore, the phase space in the neighborhood of only these

three second-order resonances will be discussed here.

Figures 3-10 show the properties of these first- and

second-order Neptune resonances. They are arranged in or-

der of decreasing mean heliocentric distance. Each figure has

seven parts: the first four [(a)-(d)] show the resonance zones

in the pseudo-surfaces-of-section [plots of (a,M)] for {e)

=0.1, 0.2, 0.3, and 0.4, respectively; note that the vertical

scale is the same in all these figures, so that the variations in

the extent of the libration and chaotic zones with {e) and

with the mean distance of the resonance from Neptune can

be readily discerned. The next two panels [(e) and (f)] show

examples of librating, resonance-locked orbits in the rotating

reference frame. The last one, panel (g), shows the period of

libration as a function of the mean orbital eccentricity and

the amplitude of libration of the resonance angle _b. A few

words are in order regarding the latter variable.

For a (j+ k):j resonance, the resonance angle is defined

as follows:

_=(j+k)h-jh'-km, (7)
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Fio. 5. The 5:3 Neptune resonance located at arc, = 1.4057 (i.e., 42.3 AU). The phase space for orbits with (a) C=3.0709, (e} =0.1; (b) C=3.0349, (e) =0.2;

(c) C=2.9739, (e) =0.3; (d) C=2.8848, (e) =0.4. The width of the libration zone increases for (e) up to _0.2, but then shrinks with increasing (e) as the
larger-amplitude resonant orbits dissolve into the chaotic zone. Note that for (e)_0.3, the formerly period-2 exact resonant orbit in the surface-of-section
becomes a period-3 orbit; this is merely a reflection of the fact that at large, Neptune-crossing eccentricities the perihelion loop results in two conjunctions

with Neptune in rapid succession [cf. panels (e) and (f)]. Panels (e) and (f) show the periodic orbit at exact resonance, and an orbit librating with finite
amplitude, respectively (both with e _0.3) in the rotating frame. (The motion of the test particle over a complete libration period is traced in these figures.)
Note that in both types of orbits the perihelion occurs away from Neptune's longitude. Panel (g) shows the libration period (in units of Neptune's orbital

period) as a function of the libration amplitude of the resonance angle _b.The libration period increases with libration amplitude only for small (e); it decreases

with amplitude for larger (e).

where k and m are the mean longitude and longitude of

perihelion of the test particle, and k' is the mean longitude of
Neptune. (Note that j is a positive integer; k is a negative
integer for interior resonances, positive for exterior reso-
nances; the latter are the only resonances of interest in this

paper.) _bis the natural variable that arises in the perturbative
analysis of orbital resonances, and it can be used to make a
first approximation theory that models the resonant motion
of the test particle with a single degree-of-freedom

pendulum-like dynamical system (see, e.g., Malhotra 1994).
For a test particle locked in a stable exterior resonance, _b
librates about a mean value which is usually 180°. [There are
two exceptions to this: (i) for sufficiently high eccentricity,
librations of the resonance angle about 0° are also possible;
and (ii) the 2:1 and the 3:1 resonances allow for asymmetric
librations where the center of libration of the resonance angle

is displaced away from 180°. These are discussed further
below.] At conjunctions with Neptune, the resonance angle is
related to the mean anomaly: dp=jM +_(e). Therefore, the
librations or chaotic variations of M evident in the surfaces-
of-section are also reflected in the behavior of _b.

The physical significance of the resonance angle can be
seen by noting that when the test particle is at perihelion,
k=_, so that

_b=j(_-k') (at perihelion).

Thus, the behavior of _bgives a direct measure of the longi-

tude separation of Neptune from the test particle's perihelion.
This is obviously a critical quantity, especially for high-

eccentricity Neptune-crossing orbits, as the stable iibration
of _ then ensures that the particle is protected from cata-

strophic close encounters with Neptune. The maximum ex-
cursion from the center of libration of ¢ then gives a mea-

sure of the smallest possible separation between Neptune and

the test particle's perihelion in stable resonance-protected or-
bits.

The resonance libration period as a function of the ampli-
tude of libration of q_ is shown for various values of (e) in

the last panel (g) of Figs. 3-10. These curves are rather
counterintuitive. Recall that in the oft-used pendulum model
for nonlinear resonances, the pendulum libration period in-

creases monotonically with amplitude and becomes arbi-

trarily large close to the separatrix (i.e., the orbit that sepa-
rates the oscillations from rotations of the pendulum). In

contrast, in Figs. 3-10(g), we see that, except for the asym-
metric librations at the 2:1 and 3:1 resonances, the libration

period in general decreases with increasing libration ampli-
tude. Furthermore, near a kth order resonance, the leading

order (in eccentricity) resonance term in the perturbing po-
tential for the test particle is proportional to the kth power of

the eccentricity, hence the small-amplitude libration period
might be expected to vary as _e-_/_; this analogy from the

pendulum model does not hold either, as evident in Figs.
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FIG. 6. The 3:2 Neptune resonance hmated at a_,= 1.3104 (i.e., 39.4 AU). The phase space for orbits with (a) C=3.0411, (e)=0.1; (b) C-3.0065, (e)-0.2;

(c) C=2.9470, (e} =0.3; (d) C=2.8616, (e)=0.4. The width of the main libration zone decreases with increasing (e), as the chaotic zone surrounding the
libration region expands. Panel (e) shows an example of a stably librating orbit (with e_0.3) in the rotating frame; note that this is an "aphelion libralor":
the test particle is near aphelion when passing Neptune's longitude, and its perihelion librates about +90 ° away from Neptune. For (e)_>0.3, a new libration
zone appears in which the librating orbits have a perihelion near Neptune. This is indicated by the appearance of a chain of two libration islands (distinct from

the main resonance zone) in panels (c) and (d); these are the "'perihelion librators" [cf. panel (f)]; The new libration zone increases with increasing (e). An
example of a perihelion librator is shown in panel (f); note that one of the two perihelion loops in each synodic period encompasses Neptune. Panel (g) shows

the libration period (in units of Neptune's orbital period) of the aphelion librators as a function of the libration amplitude of the resonance angle & The
libration period generally decreases with libration amplitude, except for very small eccentricity !e_0. t), large-amplitude librators.

3-10(g). Thus, the standard nonlinear pendulum model

should be used with caution for orbital resonances.

The general characteristics of the phase space near these

first- and second-order Neptune resonances are summarized

as follows• (Note that the 2:1 and the 3:1 resonances are

exceptional in many respects, and are discussed later in de-

tail.)

[cf. Figures 3-10(a)-(d)] In general, the phase space in

the neighborhood of a resonance contains a zone of stably

librating, resonance-locked orbits surrounded by a zone of

chaotic orbits. The width of the resonance zone (including

the stable as well as the chaotic regions) increases with (e);

however, the width of the libration zone, in general, shrinks

as the resonance separatrix dissolves into a chaotic layer that

increases in thickness with (e). The typical width of a Nep-

tune resonance libration zone is 2 Aa _-0.02, or about 0.6 AU.

[cf. Figures 3-10(e)] The periodic orbit at exact (j+k):j

resonance has a j-fold symmetry in the rotating frame: it

makes j perihelion passages during a synodic period. The

perihelion (and aphelion) longitudes are spaced 360°0. The

quasi-periodic orbits librating about the exact resonance also

exhibit j-fold symmetry in the rotating fiame when traced

over a complete libration period. For the stable librators (i.e.,

resonance angle 4> librating about 180°), the opposition with

Neptune occurs near the test particle's aphelion; hence these

may be called "aphelion librators."

[cf. Figures 6, 7, 9, 10ft)] For sufficiently large {e), a new

type of periodic (resonant) orbit is possible, where one of the

j perihelion passages during a synodic period occurs near

Neptune. In fact, the perihelion loop encompasses Neptune.

For this orbit and tor the quasi-periodic orbits in its neigh-

borhood, the resonance angle 4) librates about 0 °. These or-

bits may be called "perihelion librators." However, these

perihelion librators are probably not of practical importance,

as unmodeled perturbations are likely to destabilize them.

[cf. Figures 3-10(g)] In general, the libration periods are

smaller for resonances located closer to Neptune. and the

libration periods decrease with libration amplitude. Typical

small amplitude libration periods are (1-2)× 104 yr.

The exceptional cases of the 2:1 and the 3:1 resonances

are discussed below.

3.1 The 2:1 Neptune Resonance

The synodic period of a test particle near the 2:1 reso-

nance is approximately equal to its orbital period. Thus, con-

junctions with Neptune occur every _330 yr. The properties

of the phase space near the 2:1 Neptune resonance are sum-

marized as folh)ws (cf. Fig. 41.

The resonance half width, Aa, increases from -_().001 to

_0.018 as (e} increases from _0 to 0.4. The phase space at

this resonance is largely regular; there is no discernible cha-

otic zone until the eccentricity exceeds _0.25.

For {e} exceeding a critical value (which is _0.04 for the



512 R. MALHOTRA: NEPTUNE RESONANCES IN THE KUIPER BELT 512

a b c
1 28 .... I .... I .... I''''''''l''''l''_;I '' ...... I'_''1 ''''1'''

126

1.24

-_:> ili

122 _t_,l .... I,,,,I,,, ,,Jl,,,,l_,,,I,,,

-100 0 100 -100 0 100

1

>_ 0

e

@
-I 0 l

×

-1

d

-100 0 100

M

"o 8O
0

60
o

.a 40

r t _l [,,,,I,l J,I _ L,

-1 0 1
X

/ _ , X /

,. ..., .., Q.

l_l,,t_ltL,Jl,Ji

-100 0 tO0

g
-rrn--,], ,,, i,,, , i , ,

<_)=0.t

'".. "o0.E

""%0.3

50 100 150
maxl¢-180"l

FIG.7. The 7:5 Neptune resonance located at a_= 1.2515 (i.e., 37.7AU). The phase space for orbits with (a) C=3.0255, (e)=0.1; (b) C=2.9913, (e) =0.2;
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chaotic zone surrounding the libration region expands. In fact, for (e)_>0.3 [cf. panel (d)] the aphelion libration zone has completely disappeared. A libration
zone for perihelion librators appears at e_0.3 and expands slightly with increasing (e). Panels (e) and (f) show examples of an aphelion librator with e _0.2,
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of the libration amplitude of the resonance angle _b.The libration period generally decreases with libration amplitude, except for very small eccentricity
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2:1 Neptune resonance), there are two types of librating or-
bits: (i) symmetric librators whose perihelia librate (with

large amplitude) with a mean value 180 ° away from Nep-
tune, and (ii) asymmetric librators whose perihelia iibrate

(with amplitude smaller than _90 °) about a mean value
which depends upon (e}. (Surprisingly, the orbit with aph-

elion exactly at Neptune's longitude is unstable: it coincides

with the separatrix that divides the phase space into the sym-

metric and asymmetric libration zones.) The existence of

such asymmetric librations has been noted previously (e.g.,

Message 1958; Beauge 1994), but the work here provides the
first quantitative analysis for the specific case of Neptune's
resonances.

Figures 4(e) and 4(f) show examples of these two types of
orbits. Note that for the asymmetric librators, there are two

independent centers of libration, offset equally on either side
of Neptune's longitude. Upon inspection of the behavior of

the resonance angle &, it is found that these centers of peri-

helion libration (relative to Neptune) vary from (-+)180 ° for

(e)-_O to (+_)50° for (e)_0.4.
The phase space for the symmetric librators shrinks rap-

idly with increasing (e), while that for the asymmetric libra-

tots increases slightly.

At small values of (e), there is no evidence for a chaotic

zone near this resonance, but for {e)_>0.25, the largest am-

plitude librators become chaotic. A thin chaotic zone also

appears in the neighborhood of the separatrix that separates

the asymmetric librations from the symmetric librations.

The eccentricity variations of the resonance-locked orbits

have amplitude ,_e_<0.01. (Indeed, within the planar circular
restricted three-body model, an initially circular test particle
orbit at the 2:1 resonance has its eccentricity pumped up to

only _0.03.) The eccentricity variations on the chaotic orbits

are generally of considerably larger magnitude.
Figure 4(g) shows libration amplitude versus libration pe-

riod. For the asymmetric (small amplitude) librators, the li-

bration period decreases monotonically with (e) and in-

creases with libration amplitude (reminiscent of the standard

nonlinear pendulum). The libration period becomes indefi-

nitely large at the separatrix between the asymmetric and
symmetric librators. The small amplitude libration periods

are several tens-of-thousands of years long.

3.2 The 3:1 Neptune Resonance

The synodic period of a test particle near the 3:1 reso-
nance is half its orbital period. Thus, conjunctions with Nep-

tune occur approximately every 248 yr. The properties of the

phase space near the 3:1 Neptune resonance (cf. Fig. 3) are

very similar to that near the 2:1 resonance; some specifics are
noted below.

The resonance half width, Aa, increases from _<0.001 to

_0.016 as (e) increases from _0 to 0.4. The phase space at

this resonance is regular; there is no discernible chaotic zone

for this range of eccentricities.

For librating orbits, perihelion and aphelion occur at ap-

proximately the same longitude relative to Neptune. As in

the 2:1 resonance, there are two types of librating orbits--the
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amplitude for stable librations decreases with increasing (e).

symmetric and asymmetric librators; however, the asymmet-

ric librations appear only at (e} exceeding _0.13.

The small amplitude libration periods are very long (_0.4

Myr) for low eccentricity e_<0.1 orbits, but considerably
shorter (30 000-80 000 yr) for higher eccentricities.

4. SUMMARY AND DISCUSSION

Numerical studies of the stability of low-eccentricity, low-
inclination orbits of small objects in the trans-Neptunian

Kuiper Belt subject to the gravitational perturbations of the

giant planets have shown that the inner edge of the Kuiper

Belt is at about 34 AU heliocentric distance; beyond 34 AU

and up to about 42 AU there are interspersed regions of
stability and instability (Levison & Duncan 1993; Holman &

Wisdom 1993). This structure bears a complex correlation
with the locations of Neptune orbital resonances. Other stud-

ies (Malhotra 1993; Malhotra 1995) suggest that early in the

history of the Solar system, the majority of Kuiper Belt ob-

jects were swept into eccentric orbits in narrow zones located

at Neptune's orbital resonances, and that the regions in-
between the resonances would have been largely cleared of

residual planetesimals. Recent and ongoing observational

surveys of the outer Solar system indicate the presence of a

large population of small bodies beyond Neptune (Jewitt &

Luu 19951. These are quite likely the source of short period

comets (Duncan et al. 1988; Quinn et al. 19901. Further-

more, their orbital distribution is likely to hold clues to the

formation and early dynamical evolution of the outer Solar

system (Malhotra 1995). All of these considerations have

motivated the present study.

Using the planar circular restricted three body model
(with the Sun, Neptune, and a test particle), I have described

in this paper the basic phase space structure in the neighbor-

hood of Neptune's exterior orbital resonances. The details

may be gleaned from Figs. 3-10. A succinct summary of
these results is given in Fig. 11 which shows the locations

and widths of the stable resonance libration zones. In gen-

eral, these stable zones are bounded by chaotic layers of

thickness that generally increases with eccentricity and de-

creases with distance from Neptune. (As the mean semimajor
axis and eccentricity of chaotic orbits is not well defined, it is

not possible to represent the chaotic layers in such a figure.)

The planar circular restricted three-body model is the sim-

plest dynamical model for the orbital dynamics of small ob-

jects in the Kuiper Belt. Although this model may appear

oversimplified, it provides a reasonable description and ex-

planation for much of the dynamical behaviors found in the

numerical studies mentioned above] For example, the loca-

tion of the inner edge of this Belt at _(33-341 AU is readily

understood in terms of orbital instability induced by overlap-
ping first-order Neptune resonances; the additional perturba-

IThose numerical studies assumed a realistic three-dimensional physical
model in which test particles were perturbed by all the four giant planets,
Jupiter, Saturn, Uranus, and Neptune; the planets' orbits were integrated
self-consistently under theirmutual gravitational perturbations.
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FIG, 9. The neighborhood of the Neptune 5:4 orbital resonance located at ar_,=l.1604. The phase space for orbits with (a) C=3.0054, (e)=0.1; {b)
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increases with increasing (e). Panel (e) shows the stable periodic orbit with e_0.3 at the 5:4 resonance (an aphelion librator) in the rotating frame coordinates;

panel (f) shows an example of a perihelion librator with e_0.3. Notice the fourfold symmetry in the rotating frame. Panel (g) shows the period of libration
for the aphelion librators as a function of the libration amplitude of the resonance angle (for (e) =0. l, 0.2, 0.3, and 0.4)

tions due to Neptune's noncircular, inclined, and time-

varying orbit and the perturbations of the other planets do

not significantly change the location of this boundary.

The relatively isolated first- and second-order Neptune

resonances beyond 34 AU (in semimajor axis) provide nar-

row stable libration regions for the long-term storage of

Kuiper Belt objects in eccentric (often Neptune-crossing) or-

bits. This paper provides first approximation estimates for

the locations and widths of these regions, and for the dy-

namical properties of resonant orbits. It also provides a direct

visualization, in two-dimensional surfaces-of-section, of the

global phase space structure (i.e., the chaotic and stable re-

gions) in the vicinity of orbital resonances. A characteristic

of stable resonant orbits is the libration of the perihelion

about a longitude well removed from Neptune's location.

Typical libration periods are several tens-of-thousands of

years. The libration zones are generally surrounded by nar-

row chaotic zones where orbits are unstable on timescales of

a few libration periods, or - 105 yr. At the boundary between

the stable resonance libration zone and the chaotic zone, the

time scale for orbital instability may be exceedingly long.

This paper also provides a quantitative analysis of libration

periods and their dependence on libration amplitudes and

orbital eccentricities at all the major exterior mean motion

resonances of Neptune.

Of course, the planar circular restricted three-body model

does not provide a complete picture. Indeed, I expect that it

underestimates the extent of the chaotic zones and overesti-

mates the sizes of the stable libration zones near Neptune

resonances. But perhaps the most important missing element

is the effect of secular resonances (see, e.g., Knezevic et al.

1991) on the long-term dynamics of Kuiper Belt objects. For

example, in some regions, secular resonances produce sig-

nificant inclination excitation; in such cases, the assumption

of planarity becomes a poor approximation. [Pluto's orbit is

a case in point (Nacozy & Diehl 1978).] In order to discern

these effects, one has to build much more elaborate analyti-

cal models or resort to extensive numerical integrations.

As this work was being completed, ! became aware of

two preprints (Morbidelli et al. 1995 and Duncan etal.

1995) on the same subject. These use different approaches to

the problem: the present work has focussed on the phase

space near mean motion resonances with Neptune only and

gives results that are exact but for a highly simplified physi-

cal model; Morbidelli et al. (1995) discuss the dynamics near

mean motion resonances as well as secular resonances using

primarily approximate semi-analytic models; and Duncan

et al. (1995) discuss the dynamics near mean motion reso-

nances, secular resonances as well as nonresonant regions

using a purely numerical approach. A comparison of the

present work with these two preprints follows.

Morbidelli etal. (1995) describe semianalytic and nu-

merical investigations that include the effects of all four gi-

ant planets on the dynamics of test particles in the Kuiper

Belt. A comparison of their results for the locations and

widths of mean motion resonances (see their Fig. I) with the

estimates obtained here (cf. Fig. 11) shows that their models

significantly overestimate the sizes of the resonance libration
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FiG. 10. The neighborhood of the Neptune 6:5 orbital resonance located at a,_s= 1.1292 (i.e., 34.0 AU). The phase space for orbits with (a) C=3.0002.
(e)=0.1; (b) C=2.9680, (e)=0.2; (c) C=2.9131, (e)=0.3; (d) C=2.8334, (e)=0.4. Notice that the main libration zone (for aphelion librators) shrinks
rapidly with (e); for (e_>0.1 the center of this libration zone bifurcates into a period-2 orbit; this is simply a reflection of the fact that the perihelion loop
causes two conjunctions with Neptune in rapid succession during each synodic period. Also for (e)>0. I, a new libration zone appears for perihelion librators

[indicated by the appearance of a chain of two libration islands with centers at M =0, 7r in (b)-(d)] whose extent increases with increasing (e). The increased
complexity of this libration zone in (d) is a reflection of the fact that the perihelion loops for large-amplitude librations are so large that there are four

conjunctions with Neptune during each synodic period. Panels (e) and (f) show examples an aphelion librator and of a perihelion librator with e_0.3 at the
6:5 resonance. Notice the fivefold symmetry in the rotating frame. Panel (g) shows the period of libration as a function of the libration amplitude of the
resonance angle, & (for (e)-0.1, 0.2, 0.3 and 0.4) for the aphelion librators.

regions. Morbidelli et al.'s estimates of the resonance widths

were obtained by averaging the planar, circular restricted

problem of the four giant planets plus a test particle over fast

variables, retaining only the dependence on the resonance

angle. Thus, their analysis does not account for the overlap-

ping secondary resonances at the edges of the mean motion
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FIG. 11. The locations and widths of first- and second-order Neptune reso-
nances in the Kuiper Belt, as determined by the planar, circular restricted

three-body model. The shaded region on the extreme left indicates the cha-
otic zone of "resonance overlap" in the vicinity of Neptune's orbit. In the

region above dotted line, orbits are Neptune-crossing; these orbits are dy-
namically short-lived (due to close encounters with Neptune), unless pro-
tected by orbital resonances.

resonance libration zones that produce a chaotic layer and

cause the libration regions to shrink rapidly with increasing

eccentricity. This is the explanation for the differences be-

tween their Fig. 1 and Fig. 11 here. In addition, Morbideili

et al. find a singularity in the averaged Hamiltonian that

causes a great increase in the resonance width near Neptune-

crossing values of the eccentricity. However, this is an arti-

fact, and does not appear in the unaveraged problem, as is

obvious from the surfaces-of-section shown in the present

work. The technique 1 used here does not make any averag-

ing approximations, but uses the full unaveraged Hamilto-

nian for the circular planar restricted problem, albeit without

the secular effects of Jupiter, Saturn, and Uranus. Morbidelli

et al.'s models also show that secular effects are negligible

near mean motion resonances except in the case of the 3:2

Neptune resonance. In the special case of the 3:2 resonance,

as mentioned above, Knezevic et al. (1991) had previously

shown the existence of the _'ts secular resonance embedded

within the mean motion resonance; in addition, analysis of

Pluto's orbit had also previously revealed the existence of

another resonance characterized by the libration of the argu-

ment of perihelion (Nacozy & Diehl 1978). Both of these

resonances have the effect of exciting the inclination of the

test particle. These resonances are not modeled in the present

work, but Morbidelli et aL describe in some detail the loca-

tion and widths of both these and other secular resonances.
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However,notethatbecausemostregionsnearsecularreso-
nancesareregionsoforbitalinstability,theyarenotlikelyto
beof importanceasreservoirsof KuiperBeltobjectsal-
thoughtheymaydrivetheirtransportto smallheliocentric
distancesatthepresentepoch.

Duncanet al. (1995) have performed quite extensive nu-

merical integrations of test particle orbits subject to the

gravitational perturbations of the four giant planets. They

describe their results in terms of the stability (lover their in-

tegration time of 1-4 Byr) of orbits with particular initial

semimajor axes, eccentricities, and inclinations. Their main

conclusions are consistent with the results of the present

work: namely, that particles with low initial inclination

(-I °) and initial perihelion distance less than -35 AU are

unstable on time scales short compared to the age of the

Solar system_ except that particles librating in low-order

mean motion resonances with Neptune remain phase pro-

tected from close encounters with that planet. They have also

analyzed the 3:2 Neptune resonance in more detail for the

particular case with initial eccentricities of 0.2 and found

three regimes: stable orbits deep in resonance with small

libration amplitudes, <_70°; an intermediate region with li-

bration amplitudes in the range 70°-130 ° where the time

scale for instability is -- 109 yr; and highly unstable orbits for

libration amplitudes exceeding --130 ° with stability times-

cales of _< 10 s yr. Similar dynamics is found for all the Nep-

tune resonances studied in this paper. In comparison, the

present work has shown that the region of stability deep in

resonance as well as the highly chaotic region at large am-

plitudes are both explained by the perturbations of Neptune

alone (assumed to be on a circular orbit); the intermediate

regime where the time scale for instability is -109 yr is very

small in the restricted three-body model but evidently ex-

pands greatly (at the expense of the stable libration zone) in

the full N-body model for the outer Solar system. [In this

context, we note that if Malhotra's (1995) theory for the

orbital distribution of Kuiper Belt objects is correct, then this

intermediate libration amplitude regime which allows a long-

term leakage of resonant objects may be the primary source

of the Jupiter-family short-period comets.] Duncan et al. also

find that the resonance protection fails only at inclinations

exceeding -25 ° . Thus, we conclude that the planar circular

restricted three-body model used in the present work pro-

vides a fairly good description of these main trends. A clear

advantage of this simple model is that its analysis is quite

"inexpensive" compared to the months of CPU time ex-

pended in the numerical simulations by Duncan et al. Fur-

thermore, the numerical integration of orbits for the ag e of

the Solar system at sufficiently high resolution in the space

of initial conditions remains beyond the reach of present-day

computers, as acknowledged by Duncan et al. Thus, the g!o-

bal picture of the phase space structure obtained in the

present work provides an inexpensive yet reasonably good

baseline for understanding the dynamics in the trans-

Neptunian Solar system, and is particularly useful near mean

motion resonances.
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